
Madeo: A CAD tool for reconfigurable architecture

Product Name Madeo
Owner Lab-STICC, UBO
Developers Loic Lagadec and Pottier, Gouyen, Goubier,

Llopis, Villelas, Lépicier,
Dezan, Fabiani
Several students (UBO)

Smalltalk Dialect Cincom VisualWorks
URL http://as.univ-brest.fr/~llagadec/ESUG/
Keywords CAD, FPGA, High level synthesis
Licence Research product.

Forewords

Reconfigurable architectures are electronic circuits whose behavior can be altered on demand by
changing their configuration (bitstream, locates in an embedded memory).
These circuits offer the promise of software flexibility (writing to memory is enough to
change/refactor the applicative circuit) to circuit designer while preserving high performances
compared to purely software execution. This has favored a kind of agile circuit development with
short cycle, allowing iteration rate to the final circuit delivery far ahead of those of competing
solutions.

Another feature that made the FPGAs success possible is the high reuse of the target through
multiple applications, that allowed to recoup (very high) non recurring costs and made unattractive
designing dedicated circuits (ASICs) in many cases.

At this time, FPGAs vendors offer huge circuit, embedding several microprocessor cores. The main
question is now «how to program these ? . On the other side, smaller companies sell reconfigurable
cores to be located within an heterogeneous System On Chip.
Again the problem appears to deliver well suited tools to allow application synthesis. The wide
spread solutions come from outdated former ones , VLSI oriented (strongly typed code such as
VHDL to private bitstream format, through vendor specific tools), hence bring a productivity gap.

Overview

Madeo is a framework that addresses application synthesis over reconfigurable architectures
(FPGAs).
Madeo is composed of Madeo-Bet (target definition) and Madeo-Fet (application specification).
 Madeo-Bet allows to model the FPGA target, relying on element composition, topology
information and computing element specification. This model supports a set of tools to floorplan,
place and route application, appearing as register transfer level (RTL) textual formats, and to output
resource allocation (required for bitstream generation, i.e. configuration production).

Madeo supports architectural prospection and very fast FPGA prototyping. Several FPGA,
including some commercial ones (e.g Xilinx Virtex family) and prospective ones (STMicro
LPPGA) have been modeled using Madeo. Also, Madeo-Bet has been used to address some
reconfigurable datapath, and an emerging nano-technology from Umass (NASIC architecture).

Madeo-Fet is used to produce RTL description based on pieces of Smalltalk code on one hand, and
external context (i.e. values set for each variable) on the other hand. Madeo relies on enumeration
to build up truth tables that are converted to a binary format (PLA) that is post-processed using third
party tools (SIS, from UC. Berkeley). The result is a hierarchical graph of optimized logic modules,
that Madeo-Bet takes as input.
Madeo-Lite is a alternative version of Madeo-Fet that promotes the use of execution traces to
collect values set, rather than relying on the designer to provide the context. This has been used to
generate very efficient turbo decoders circuits.

A third level, out of the scope of this presentation is Madeo+ that is dedicated to architectural
synthesis (i.e implementing control structures such as loops, multi process handshakes, ...).
Madeo+ addresses building up a concurrent threads-to-FPGA path. Madeo-Bet is used to generate
missing operators (operators that are not in library) and custom primitives (e.g. loop termination).
Madeo+ has been partly developed in the scope of the Morpheus EU Project.

Application Modeling

This work was initiated in the mid 90s. The goal of the first version of Madeo-Fet (revisiting
smalltalk-80 blocks) was to generate some small circuits based on a simple Smalltalk block to
ensure efficient development. The block parameters were inputs of the circuit, while some
variables, external to the block, acted as states, hence allowed to design sequential circuit as well.
The circuit performances could be raised up by automatically inserting flip-flops, hence increazing
the pipeline.

As a block based structure was not enough to build composite circuit, the Madeo-Fet project started
in 2000. Madeo-Fet inherits from the former work its ability to generate/simplify RTL description,
and extends it by supporting Smalltalk code parsing. The AST is used to generate a composite of
messages sends. The application domain is represented by a class. For every method of the class,
the AST can push forward the composite pattern or considers it as an atomic action; this depends on
either tree depth, or can consider the method's category for decision. Also manual labeling remains
possible so that the designer keeps a total control over the process. For method external to the class,
the call appears always as an atomic action.

The first step is to build up the AST (see figure 1), then by
applying the context to the inputs and performing type propagation
(on demand, depth first,...) the AST is converted to a graph of
truth-tables.
Some classical compiler optimizations take place at this level (dead
code removal, code fusion, ...) as well as some revisited one (e.g.
op removal).
The context can refer to some non special types such as Galois-
Field, with no impact on the application specification. In
comparison, migrating from a float to GF typing may require up
to a full redesign of the circuit with standard (traditional VLSI)

 Figure 1: Graphical Tool: approach.
 Code/Types/AST

 The truth tables are converted to binary representation with a set of translators (2 bits, index
based, type based), then logic synthesis takes place to output a minimized RTL description.

The code example is a
floating point multiplier,
operating on a couple of
three values (sign,
significand and exponent).
Typing relies on a set of
classes for radix coding,
set/interval, Galls Fields,
scientific notation, etc.

sign: signA significand: significandA exponent: exponentA sign: signB significant:
significandB exponent: exponentB

| sign exp significand normalize |
sign := self computeSignFor: signA and: signB.
significand := self computeSignificandFor: significandA and: significandB.
exp := self computeExponentFor: exponentA and: exponentB.
normalize := self normalizeSignificand: significand.
^Array

with: sign
with: (normalize at: 1)
with: exp + (normalize at: 2)

Figure 2: a Floating point multiplier at several optimization steps. red boxes are leaves within the
domain(eg. #normalizeSignificand;), yellow ones are composite nodes and light grey boxes are
external leaves (e.g. #+).

Target Modeling
 Madeo-Bet describes a set of
classes for elementary elements
(wires, transistors, ...) and
composition mechanisms (matrix,
composite).
Each target is described as a
proprietary HDL code (figure 4),
whose compilation is used to
instantiate the model, and that
supports parameterized variation to
favor domain exploration (see left
side of figure 3).
The instance of the target model is
accessed through a set of tools to
perform editing, floorplaning,
place/route, ... that are required to

 Figure 3: Global flow. program the target.

Also, Madeo-Bet supports generating bitstream and controlling third parties tools. As an example,
figure 5 shows a circuit in Madeo-Bet and its counterpart in the Xilinx tools (fine resource
allocation vs color based routing density information).
Figure 6 shows the layout of the floating point multiplier (the figure 2), on a LPPGA FPGA.
As the application remains executable , generating characterization tests is straight forward.
Also, assuming the internal state of the FPGA is accessible (e.g. XC6200 family from Xilinx), the
tests can be extended to in-situ execution, taking advantage of Smalltalk polymorphism to hide
hardware/software nature of the execution..

 Figure 5: Madeo vs Vendor Tools
 Figure 4: Specifying a target in Madeo-Bet

Madeo-Bet has also been extended to design circuit on an emerging nano-technology, with as
special goal to implement nano-FPGAs. As an example, figure 7 shows a look-up table (elementary
element of the FPGA, figure 3) implemented on top of such a technology.

Figure 6: The UGI of Madeo-Bet. A synthesized floating-Point on Figure 7: a 3 inputs LUT in
 the LPPGA FPGA, and its simulation results. NanoMadeo.

Concluding Remarks
Madeo is a Smalltalk framework, that offers an alternative to the use of expensive commercial
synthesis/back-end Tools, while exhibiting OO well known characteristics: agile development
facilities, high reuse, modularity, etc. Madeo has been being used in several projects (PRIR
ValMadeo, RNTL OSGAR, FP6 Morpheus).

	Forewords
	Overview
	Application Modeling
	Target Modeling
	Concluding Remarks

