Generating Integrity Preserving
Associations,

The First step to Biome

What is Gipa

Gipa is a set of parameterized implementation level
pattern classes.

These can be used to generate methods and variables
in domain model classes.

The patterns describe a type of association and their
composing roles.

T
|
T

he current focus of Gipa is on structure associations
ke 1 to n relationship.

he focus of Gipa is on integrity preservation.

Gipa looks like MDA, but with a complete different
focus.

Overview

ntegrity in domain models
Homeostatic or self regulating approach

Patterns of integrity preserving associations
Specifying associations

Code generation based on patterns and
specification

Biology inspired object-oriented modeling
environment (Biome)

The problem:

Objects may change their state and this change
may influence the state of other objects.

The state of objects may be in conflict with the
state of other objects.

This is the integrity problem

This may be solved using with self regulating or
homeostatic algorithmes.

Development of homeostatic algorithms is time
consuming and requires extensive testing.

Integrity of object structures

Classical ER structure
Classical problem but not solved
Dangling pointers-dangling objects

Gipa solution: a set of rules that can be
guarded by homeostatic methods.

Integrity in domain models

* 3 types of domain objects:
— Data objects (Integer, Timestamp, Class etc)
— Structure objects (Collections)
— Model objects.

3 Rules

* Data objects should never be changed.
e Structure objects should be kept private.

* Navigation between model objects should
always be bidirectional.

Advantage and disadvantage

* Advantages
— The domain model is always stable.

— There are a number of patterns supporting the
rules.

* Disadvantages

— Coding is a more complicated, and a very
repetitive (boring) task.

Solution

* A framework for generating pattern based
code.

— A (domain) model specified in a package and a
namespace

— A collection of domain classes.
— A collection of associations.

— A collection of roles for each association, to be
implemented by a set of classes.

Association patterns

* The pattern describes the association in a
parameterized way.

* The names of methods and variables are
stored in roles.

* Given the specification of the association in
roles, methods and variables are generated.

Various patterns

ToOne (= attribute access in the VW browser)
ToMany

OneToOne

OneToMany

ManyToMany

DoubleLink

Tree

Any pattern anybody wishes to implement

o U1 A W N B

Very simple example

patternToOneGet
| stream |
stream := CodingStream arguments: self args.
stream nextPutAll: ‘{one,simple:s}
None,var:s}.
Astream selector ->(stream code}

Specification of an association

The association pattern

For each role specified by the association
pattern, the variable- and method name

bases.
XML format: GXD (Gipa XML Definition)

GXD comparable to class diagram definition
in UML.

Example

<GipaModel package="Gipa-generated oneToMany" namespace="GIPAExample”>

<gipaClass className="G_master_OneToMany">
<field name="name"/>
</gipaClass>

<gipaClass className="G_detail_OneToMany">
<field name="name"/>
</gipaClass>

<gipaAssociation definition="0neToMany">
<role role="one" variable="maten" single="maat" multiple="maten">
<class className="G_master_OneToMany"/>
</role>
<role role="many" variable="master" keySelector="name" create="true">
<class className="G_detail_OneToMany"/>
</role>
</gipaAssociation>
</GipaModel>

VOOC

14

Generated classes and methods

& G_detail OneToMany @ “master-accessing master
& G_master_OneToMar attribute-accessing master:
name
name:

G_detail_OneToMany *maten-accessing addMaat:
G_master_OneToMar attribute-accessing atMaat:
atMaat:ifAbsent:
clearMaten
clearName
getMaat:
getMaatifNew:
maten
maten:
name
name:
removeMaat:

L
&

0O NN OO 0 Hp W N B

Crucial method for “many”

master: newMaster
newMaster = master ifTrue:[*newMaster].
master ifNotNil: [:old |
master := nil.
old removeMaat: self].
newMaster ifNotNil: [
master .= newMaster.
newMaster addMaat: self]

Crucial method for “one”

addMaat: newMaat
| result |
maten ifNil: [maten := OrderedCollection new].
result := maten detect: [:item | item name = newMaat name]
ifNone:|[
maten add: newMaat.
newMaat master: self.
AnewMaat].
result == newMaat ifTrue:[*newMaat]
10 ifFalse:[
11 AGipaDuplicateKeyException raiseRequestWith:
12 (Array with: result with: newMaat)]

OO0 NOYUL B WNDN PR

Result

* A class diagram can be specified in gxd using
an xml editor like oxygen

* This generates Smalltalk code 10 times larger.
* This generated code is already tested.

Work to do

* Gipais part of a larger project: Biome
* Biome: Biology Inspired Object-oriented
Modelling and Engineering

e Structure of Biologic science can be used as a
metaphore for agile object-oriented
development and its environment

Mapping Biologic science to OO
development

Cell theory Object theory

Gene theory Class and Role
Persistence

Research areas Design areas

Physiology Processing, Algorithms, Unit testing
Structure Object structure, class diagram
Taxonomy Inheritance

Ecology Interaction, Associations

VOOC 20

Mapping Il

Evolution Versions

Energy Efficiency

Homeostasis Not named,
Often used in stable parts,

Self regulating associations.

Homeostasis

VOOC 21

Focus of Biome

Modelling (Associations and their patterns)
Versioning (Evolution of models)
Persistancy

IDE

Focus of Biome (modelling)

 Modelling of associations and association
patterns

* Implementing roles by classes

e Stimulating homeostasis to make associations
and models self regulating

Focus of Biome (versioning)

Current versioning VW = packages.
A Gipa model is stored in package.
Needed granularity: associations

Needed version association:

— pattern version-> association version

Implementing an association version is a
transaction

Focus of Biome (Persistancy)

e Associations and roles can be mapped to Gipa
descriptions in GXD

* Supporting Glorp using GXD
* Supporting XML marshalling using GXD

Focus of Biome (IDE)

Supporting Association-Role modelling
Supporting Association-Role pattern modelling

Supporting version implementation as
transaction

Supporting updating associations as a result of
an association pattern upgrade or downgrade.

