SqueakSave

Thomas Kowark Robert Hirschfeld Michael Haupt
July 7, 2009

Abstract

SqueakSave is an object-relational (O/R) mapping framework that provides the benefits of relational
database storage without the need for extensive user defined mappings between object structures and
relational schemas. The API is kept as simple as possible and blends in seamlessly with Smalltalk
programming paradigms. Only minimal configuration is required in order to add relational persistence
to existing or newly created applications

1 Project Description

Keywords: Persistence, Object-Relational Mapping, Metaprogramming and Reflection

1.1 Programming with SqueakSave

Using the SqueakSave framework in order to add persistence to an application is intended to be as simple
as possible. The only thing required to use the framework is the specification of valid connection data
for accessing the underlying relational database. Once this has been done, all application objects can be
saved with a simple call of the save method. But not only storing objects is meant to feel as natural as
possible within a Smalltalk environment - and what feels more natural than telling an object to store itself?
Retrieving objects from the database is also seamlessly integrated into the language because the query API
closely emulates the Smalltalk collection protocol.

1.2 Extending SqueakSave

SqueakSave is, however, not only built with the goal of simple usage, but an emphasis has also been put
on the extensibility of the framework. Therefore, abstract base classes exist that provide simple guidelines
for the development of new ways to describe the mapping between objects and relational database schemas
(e.g. Pragmas, XML documents, etc.) or implement adapters for different relational database management
systems.

1.3 Outlook

The first iteration of the framework is currently under heavy usage by the students of a university lecture
held at the Hasso Plattner Institute! in Potsdam, Germany. All feedback that is gathered during those
projects is recorded and will be incorporated into future versions of the framework. Additionally, we are
also working on the extension of the framework with new features. This includes the ability to read or write
O/R mapping descriptions of other O/R mapping frameworks like GLORP?2, but also some improvements
regarding caching mechanisms, eager loading, or accumulation of storage operations.

Thttp://www.hpi-web.de
2http://www.glorp.org

1.4 Developers and Acknowledgements

The framework has been developed by Thomas Kowark during the course of his master’s thesis at the
Hasso Plattner Institute (HPI) in Potsdam, Germany. Helpful advise has been contributed by the members
of HPI’s Software Architecture Group®. While the predominant part of the framework has been developed
from scratch, the query mechanism is based on the work carried out by William Harford and Eric Hochmeister
for the ReServe project?

1.5 System Requirements

As the name implies, SqueakSave has been developed with and for the Squeak® Smalltalk dialect. While
porting the framework to other dialects and VMs should be possible without any major effort, we are
currently not planning to do so because of the increased maintenance overhead the emerges with offering the
framework and especially fixes for all available platforms.

With regards to Squeak, supported versions include 3.9 and 3.10 images. A good starting point for (web)

development with Squeak are the development images built by Damien Cassou®.

2 Download and Installation

Currently, the framework is only available from the Squeak Source Monticello Repository of the SWA group:
e http://www.hpi.uni-potsdam.de/swa/squeaksource/SqueakSave

The repository is set-up to be readable without any special permission, thus, username and password
can be left blank. We are currently also working on combining all required parts into a package that can be
conveniently downloaded with the SqueakMap Package Loader or through the Universe Browser. But as of
now, the following packages have to be loaded in the following order:

e SqgSave

e The RDBMS client of your choice. For example, the PostgreSQL Client from Universe or SqueakMap
or the MySQL Client from the SqueakSave repository.

e The driver package corresponding to the chosen client. This means, if you chose the PostgreSQL Client,
you have to download the SqSavePostgresDriver. For MySQL you need the SqSaveMySqlDriver
package, respectively.

e OPTIONAL: If you want to use SqueakSave’s dynamic finder methods for searching, you also have to
download the VB-Regex package. It is also available in Universe or via the SqueakMap Package Loader.

3 First Steps: Adding Persistence to an Application

The following introduction will provide only a short description of the required steps to get your application
up and running with SqueakSave. For a more detailed description please refer to the paper or the master’s
thesis about the framework. They contain much more detailed information about the usage and especially
the inner-workings of the framework. A usage introduction is also available in the wiki of the SqueakSource
homepage” of the project

In the following we will use a simple weblog application for our example. The application’s object model
is fairly simple:

Shttp://www.hpi.uni-potsdam.de/swa/
4http://www.squeaksource.com/REServe. html
Shttp://www.squeak.org
Shttp://damiencassou.seasidehosting.st/Smalltalk/squeak-dev
"http://www.hpi.uni-potsdam.de/swa/squeaksource/SqueakSave.html

MyAppSqsConfig class >> connectionSpecification
T SqsPGConnectionSpecification
user: 'test’
password: 'test’
database: 'my_blog’

Listing 1: Specifiying the Configuration

e Users are separated by inheritance into Admins and Authors.

Each user has a username, password and email adress.

e Authors have a Blog with 0 or more BlogEntries.

Each BlogEntry has 0 or more Comments attached to it.

Blogs, BlogEntries, and Comments have a title. BlogEntries and Comments additionally a body.

e An Admin is responsible for a number of Blogs - administratedBlogs.

3.1 Creating a configuration

SqueakSaves uses a naming convention based approach to determine the configuration for your application.
This configuration basically tells the framework, where to store your objects. In order to create a configura-
tion, all that has to be done is to create a subclass of SqsConfig that is named after the category of your
application. If all you application’s model classes for example reside in a category named MyBlog-Models
then you can either name the configuration class MyBlogSqsConfig or MyBlogModelsSqsConfig. The lat-
ter, however, will only be valid for all model classes, so if you try to persist instances of classes in let’s say
MyBlog-ExtendedModels, the framework will trigger an error. No all that’s left to do is creating a method
named connectionSpecification on the class side of this configuration class. Depending on the chosen
RDBMS driver, this method has to return an instance of the respective connection specification class. For
PostgreSQL this method would look like shown in Listing 1.

3.2 Basic Persistence Operations

Now that the framework knows where to store your data, you can start to store created objects in the
database and perform queries on the persistent space. Storing is as simple as it gets, since all you have to do
is call save on any object of your application. All required table structures will be automatically generated,
or, if already present, altered to reflect the current structure and data types of the saved object. So if you
add an instance variable to one of your classes, the framework accordingly alters the table structure. So no
need for you to write any O/R mapping descriptions by yourself - the framework takes care of this and you
can alter them if you have to. Listing 2 shows you in a nutshell what you can do with SqueakSave and your
objects.

3.3 Searching

While simple storing is of course an important part of persistence, retrieving objects from persistent space
is just as viable for any application. SqueakSave closely emulates the Smalltalk collection protocol, so you
can almost write your queries as if you were operating on the collection of all instances of a class within your
image. The examples in Listing 3 show some of the possibilities of the SqueakSave query mechanism.

As you can see, simple comparisons of direct attributes, such as username, with a given value are possible.
Additionally, you can also follow multiple references from an instance variable and thus only select authors
with a blog that has more than 10 entries or only blogs with at least one blog entry that has been commented
at least once. The only limitations of this algorithm are:

author := Author new
username: 'hemingway’;
password: 'secret’;
email: 'ernest@hemingway.net’'.

author blog: (Blog new title: 'My Blog').
author save.

blogEntry := BlogEntry new
title: 'My first Blog Entry’;
body: 'Just testing ... ".

blog blogEntries add: blogEntry.
blog save.

"now we want to delete the blog entry from our database”
blogEntry destroy.

Listing 2: SqueakSave Basic Operations

(SgsSearch for: Author) detect: [:anAuthor | anAuthor username = 'hemingway'].
(SgsSearch for: Author) select: [:anAuthor | anAuthor blog blogEntries size > 10].

(SgsSearch for: Blog) select: [:aBlog | aBlog blogEntries anySatisfy: [:aBlogEntry |
aBlogEntry comments size > 1]].

Listing 3: SqueakSave Search Operations

e Method calls to the search block objects are limited to instance variable accessor methods

e operations on Collections, Integers, etc. have to be implemented within SqueakSave since they are
mapped to SQL queries

3.4 Summary

The previous examples have shown that SqueakSave provides persistence for applications in a manner that
can hardly be simplified anymore. One save call is enough to store an object and associated ones without
caring about table structures, O/R mappings, and the like. Searching is also made as simple as possible
and if it wasn’t for the SgsSearch part, would be no different from searching for any object within the
image itself. However, this functionality is only the tip of the iceberg, so please try the framework for your
application and take a look at the detailed communication to explore the possibilities offered by SqueakSave.

4 License Information

The SqueakSave framework is licensed under the MIT License. The MySQL bindings that are available in
the Monticello repository of SqueakSave are licensed under the GPL. However, they are not an integral part
of the framework and distributed separately.

