
ESUG Awards – Iliad Web Framework – Nicolas Petton & Sébastien Audier

Iliad, a lightweight but
powerful web

framework
http://iliad.bioskop.fr

Université de Montpellier II, FRANCE

Nicolas Petton petton.nicolas@gmail.com
Sébastien Audier sebastien.audier@gmail.com

1. Introduction

Iliad is a new web framework for GNU
Smalltalk released under the MIT license. We're
working on this framework since a few months
now. For our personal needs, we wanted to
have the following features in the framework:

• standalone stateful widgets
• REST-like applications
• simple API
• easy to setup and deploy (no

complicated configuration step)

In order to avoid to reinvent the wheel, we
started it by reusing pieces of code from other
libraries. In particular, we adapted the dispatch
pattern from HttpView2, the composite element
hierarachy for building HTML from Aida/Web,
and the stateful Widgets from Seaside, however
without using continuations. A bit of glue code
was needed to make this work together, but we
quickly ended up with something that actually
worked.

The logical next step was to add a javascript
layer to fully ajaxify those stateful widgets.
Amazed by Weblocks "mark dirty" mechanism,
we reused this idea to make it work with Iliad. I
must say that the result was nice, and made
Iliad applications really smooth and fast. A cool
thing is that Iliad degrades nicely to full
requests if javascript is not enabled, so the
behaviour of Iliad remains the same.

2. Short tutorial

Iliad comes with several examples: the seaside-
like counter, a simple blog using Magritte, and a
todo list application.

2.1 Elements and Widgets

To use Iliad, you need to understand two
important parts of the framework: Widgets and
Elements.

Widgets are high level stateful graphical
objects, while Elements are composite low level
stateless objects for building HTML. Widgets
use elements in their #contents method to build
themselves.

People who are familiar with Aida/Web will
immediately understand how elements work.
Each XHTML tag has a corresponding element
class which knows how to print itself as HTML
with the #printHtmlOn: method.

e div
 class: 'example';
 h1: 'Hello world!'

<div class="example">
 <h1>Hello world!</h1>
</div>

The #contents method of widgets used to build
html returns a block closure which takes an
element as parameter:

Iliad.Widget subclass: MyWidget [

 contents [
 ^[:e |
 e div class: 'example';
h1: 'hello world!']
]
]

2.2 Applications

Iliad applications are special widgets, used as
entry points of web applications.
Unlike other widgets, they know how to
dispatch a request to the corresponding view

1

http://iliad.bioskop.fr/
http://www.seaside.st/
http://www.aidaweb.si/
http://www.squeaksource.com/HttpView2/
mailto:sebastien.audier@gmail.com
mailto:petton.nicolas@gmail.com

ESUG Awards – Iliad Web Framework – Nicolas Petton & Sébastien Audier

method.

Application subclass: MyApplication [

 MyApplication class >> path [
 ^'my_application'
]

 index [
 <category: 'views'>

 ^[:e |
 e h1: 'Hello world!']
]
]

The #path class method is important, it tells
Iliad what is the base path of the application.

View methods in applications are pretty much
like the #contents method of widgets. By
default, they must be in the 'views' method
protocol, else they won't be allowed to be used
as view methods.

The #index method is the default view method,
so this view can be reached at:
http://localhost:xxxx/myApplication/index or
http://localhost:xxxx/myApplication

2.3 The counter widget example

Let's take a look at the Counter widget class.

Iliad.Widget subclass: Counter [
 | count |

 initialize [

 super initialize.
 count := 0
]

 contents [
 <category: 'building'>
 ^[:e |
 e h2: count printString.
 e anchor
 action: [self
increase];
 text: '++'.
 e space.
 e anchor
 action: [self
decrease];
 text: '--'.]

]

 decrease [
 <category: 'actions'>
 count := count - 1.
 self markDirty
]

 increase [
 <category: 'actions'>
 count := count + 1.
 self markDirty
]
]

A counter widget has a count instance variable,
initialized to 0. Its #contents method builds a
header displaying the current count value, and
two anchors, one to increase the count, and one
to decrease it.

There is something new in this #contents
method: the actions associated to the anchors.
Actions are block closure that will be evaluated
when the user clicks on the associated link or
button. Here we use them to modify the count
value with #increase and #decrease methods.

Also note the #markDirty call in #increase and
#decrease. These method is really important
when updating the state of a widget. It tells Iliad
that the widget's state has changed, so it will be
rebuilt.

2.4 The counter application

The counter widget is, like all Iliad widgets, a
standalone graphical object. Let's create a
simple application to see it in action!

Iliad.Application subclass:
CounterApplication [
 | counter |

 CounterApplication class >> path
['counter']

 counter [^counter ifNil:
[counter := Counter new]]

 index [
 <category: 'views'>
 ^[:e |
 e build: self counter]
]

2

ESUG Awards – Iliad Web Framework – Nicolas Petton & Sébastien Audier

]

As you may have noticed, the counter widget is
stored into an instance variable, so a new one
won't be created on each request. This is
important, because our counter has state, and it
must be maintained between requests.

Also, we don't call the #contents method of the
widget directly. it should never be called from
the outside.

That's it, you can see your counter at:
http://localhost:xxxx/counter

NOTE1: When trying the counter example, you will
notice that the widget is updated with AJAX requests.
Iliad has a nice javascript layer which does that for us :).
If javascript is disabled, it will degrades to normal
requests, but the behaviour will remain the same.

NOTE2: The counter example code is available in the
More/Examples/ directory. CounterApplication is a bit
more complete, and shows also a multi-counter example.

3. Links

– Iliad's website: http://iliad.bioskop.fr

– SVN: http://bioskop.fr/svn/gst/iliad

– Related posts:
http://smalltalk.gnu.org/tags/iliad

3

http://smalltalk.gnu.org/tags/iliad
http://bioskop.fr/svn/gst/iliad
http://iliad.bioskop.fr/

	1. Introduction
	2. Short tutorial
	2.1 Elements and Widgets
	2.2 Applications
	2.3 The counter widget example
	2.4 The counter application

	3. Links

