
Mutation Testing

Hernán Wilkinson

UBA - 10Pines

hernan.wilkinson@gmail.com

Nicolás Chillo

UBA

nchillo@gmail.com

Gabriel Brunstein

UBA

gaboto@gmail.com

What is Mutation Testing?

Technique to verify the quality of the tests

What is Mutation Testing?

Source Code Tests

Verify Quality of…

Mutation

Testing

Verify Quality of…

How does it work?

1st Step: Create the Mutant

The Source

Code

The Mutation “Operator”

Mutation

Process

The “Mutant”

Examples
DebitCard>>= anotherDebitCard

^(type = anotherDebitCard type)

and: [number = anotherDebitCard number]

CreditCard>>= anotherDebitCard

^(type = anotherDebitCard type)

or: [number = anotherDebitCard number]

Operator: Change #and: by #or:

Examples

Purchase>>netPaid

^self totalPaid – self totalRefunded

Purchase>>netPaid

^self totalPaid + self totalRefunded

Change #- with #+

Why?

How does it help?

How does it work?

2nd Step: Try to Kill the Mutant

A Killer

tries to kill the Mutant!

The Test Suite

The “Mutant”

All tests run  The Mutant Survives!!!

A test fails or errors  The Mutant Dies

Meaning…

The Mutant Survives  The case generated by the mutant

is not tested

The Mutant Dies  The case generated by the mutant is

tested

Example: The mutant survives
DebitCard>>= anotherDebitCard

^(type = anotherDebitCard type) and: [number = anotherDebitCard number]

DebitCard>>= anotherDebitCard

^(type = anotherDebitCard type) or: [number = anotherDebitCard number]

DebitCardTest>>testDebitCardWithSameNumberShouldBeEqual

self assert: (DebitCard visaNumbered: 123) = (DebitCard visaNumbered: 123).

Operator: Change #and: by #or:

Example: The mutant dies
DebitCard>>= anotherDebitCard

^(type = anotherDebitCard type) and: [number = anotherDebitCard number]

DebitCard>>= anotherDebitCard

^(type = anotherDebitCard type) or: [number = anotherDebitCard number]

DebitCardTest>>testDebitCardWithSameNumberShouldBeEqual

self assert: (DebitCard visaNumbered: 123) = (DebitCard visaNumbered: 123).

Operator: Change #and: by #or:

DebitCardTest >>testDebitCardWithDifferentNumberShouldBeDifferent

self deny: (DebitCard visaNumbered: 123) = (DebitCard visaNumbered: 789).

Example: The mutant survives
Purchase>>netPaid

^self totalPaid – self totalRefunded

Purchase>>netPaid

^self totalPaid + self totalRefunded

Purchase>>testNetPaid

| purchase |

purchase := Purchase for: 20 * euros.

self assert: purchase netPaid = (purchase totalPaid – purchase totalRefunded)

Change #- with #+

Example: The mutant dies
Purchase>>netPaid

^self totalPaid – self totalRefunded

Purchase>>netPaid

^self totalPaid + self totalRefunded

Purchase>>testNetPaidWithOutRefunds Renamed!

| purchase |

purchase := Purchase for: 20 * euros.

self assert: purchase netPaid = (purchase totalPaid – purchase totalRefunded)

Purchase>>testNetPaidWithRefunds

| purchase |

purchase := Purchase for: 20 * euros.

purchase addRefundFor: 10 * euros.

self assert: purchase netPaid = (purchase totalPaid – purchase totalRefunded)

Change #- with #+

How does it work? - Summary

• Changes the original source code with

special “operators” to generate “Mutants”

• Run the test suite related to the changed

code

• If a test errors or fails Kills the mutant

• If all tests run The Mutant survives

• Surviving Mutants show not tested cases

The Important Thing!

MuTalk

Mutation Testing Tool for Smalltalk (Pharo

and Squeak)

Demo

MuTalk – How does it work?

• Runs the test to be sure that all run

• For each method m

• For each operator o

• Changes m AST using o

• Compiles mutated code

• Changes method dictionary

• Run the tests

MuTalk – Operators

• Boolean messages
• Remove #not

• Replace #and: with #eqv:

• Replace #and: with #nand:

• Replace #and: with #or:

• Replace #and: with #secondArgResult:

• Replace #and: with false

• Replace #or: First Condition with false

• Replace #or: Second Condition with false

• Replace #or: with #and:

• Replace #or: with #xor:

MuTalk – Operators

• Magnitude messages
• Replace #'<=' with #<

• Replace #'<=' with #=

• Replace #'<=' with #>

• Replace #'>=' with #=

• Replace #'>=' with #>

• Replace #'~=' with #=

• Replace #< with #>

• Replace #= with #'~='

• Replace #> with #<

• Replace #max: with #min:

• Replace #min: with #max:

MuTalk – Operators

• Collection messages
• Remove at:ifAbsent:

• Replace #reject: with #select:

• Replace #select: with #reject:

• Replace Reject block with [:each | false]

• Replace Reject block with [:each | true]

• Replace Select block with [:each | false]

• Replace Select block with [:each | true]

• Replace detect: block with [:each | false] when #detect:ifNone:

• Replace detect: block with [:each | true] when #detect:ifNone:

• Replace do block with [:each |]

• Replace ifNone: block with [] when #detect:ifNone:

• Replace inject:aValue into:aBlock with aValue

• Replace sortBlock:aBlock with sortBlock:[:a :b| true]

MuTalk – Operators

• Number messages
• Replace #* with #/

• Replace #+ with #-

• Replace #- with #+

• Replace #/ with #*

MuTalk – Operators

• Flow control messages
• Remove Exception Handler Operator

• Replace #ifFalse: receiver with false

• Replace #ifFalse: receiver with true

• Replace #ifFalse: with #ifTrue:

• Replace #ifFalse:IfTrue: receiver with false

• Replace #ifFalse:IfTrue: receiver with true

• Replace #ifTrue: receiver with false

• Replace #ifTrue: receiver with true

• Replace #ifTrue: with #ifFalse:

• Replace #ifTrue:ifFalse: receiver with false

• Replace #ifTrue:ifFalse: receiver with true

Why is not widely used?

Is not new … - History

Begins in 1971, R. Lipton, “Fault Diagnosis of

Computer Programs”

Generally accepted in 1978, R. Lipton et al,

“Hints on test data selection: Help for the

practicing programmer”

Why is not widely used?

Maturity Problem: Because Testing is not

widely used YET!

(Although it is increasing)

Why is not widely used?

Integration Problem: Inability to successfully

integrate it into the software development

process

(TDD plays a key role now)

Why is not widely used?

Technical Problem: It is a Brute Force

technique!

Technical Problems

• Brute force technique

N x M

N = number of tests

M = number of mutants

Aconcagua

• Number of Tests: 666

• Number of Mutants: 1005

• Time to create a mutant/compile/link/run:

10 secs. each aprox.?

• Total time:

– 6693300 seconds

– 1859 hours, 15 minutes

Another way of doing it…

CreditCard>>= anotherCreditCard

^(anotherCreditCard isKindOf: self class) and: [number =

anotherCreditCard number]

CreditCard>>= anotherCreditCard

MutantId = 12 ifTrue: [^(anotherCreditCard isKindOf: self class) or: [

number = anotherCreditCard number].

MutantId = 13 ifTrue: [^(anotherCreditCard isKindOf: self class)

nand: [number = anotherCreditCard number].

MutantId = 14 ifTrue: [^(anotherCreditCard isKindOf: self class) eqv: [

number = anotherCreditCard number].

Aconcagua

• Number of Tests: 666

• Number of Mutants: 1005

• Time to create the

metamutant/compile/link: 2 minutes?

• Time to run the tests per mutant: 1 sec

• Total time:

– 1125 seconds

– 18 minutes 45 seconds

MuTalk Optimizations

Running Strategies
Mutate all methods, run all tests per

mutant

– Create a mutant for each method

– Run all the test for each mutant

– Disadvantage: Slower strategy

Mutate covered methods, run all

tests per mutant

– Takes coverage running all tests

– Mutate only covered methods

– Run all methods per mutant

– Relies on coverage

Mutate all methods, run only test

that cover mutated method
– Run coverage keeping for each

method the tests that covered it

– Create a mutant for each method

– For each mutant, run only the

tests that covered the original

method

Mutate covered methods, run only test

that covered mutated methods
– Run coverage keeping for each

method the tests that covered it

– Create a mutant for only covered

methods

– For each mutant, run only the tests

that covered the original method

MuTalk - Aconcagua Statistics

• Mutate All, Run All: 1 minute, 6 seconds

• Mutate Covered, Run Covering: 36

seconds

• Result:

• 545 Killed

• 6 Terminated

• 83 Survived

More Statistics

MuTalk Optimizations

Terminated Mutants

Try to kill the Mutant!

The Test Suite

The killer has to be

“Terminated”

MuTalk - Terminated Mutants

• Take the time it runs each test the first

time

• If the test takes more thant 3 times,

terminate it

Let’s redefine MuTalk as…

Mutation Testing Tool for Smalltalk (Pharo

and Squeak) that uses meta-facilities to

run faster and provide inmediate feedback

Work in progress

• Operators Categorization based on how

useful they are to detect errors

• Filter Operators on View

• Cancel process

Future work

• Make Operators more “inteligent”

• a = b ifTrue: […]

• a = b ifFalse: [] is equivalent to a ~= b ifTrue: []

• Suggest tests using not killed mutants

• Use MuTalk to test MuTalk?

Why does it work?

“Complex faults are coupled to simple faults

in such a way that a test data set that detects

all simple faults in a program will detect most

complex faults” (Coupling effect)

Demonstrated in 1995, K. Wah, “Fault coupling in finite

bijective functions”

Why does it work?

“In practice, if the software contains a fault,

there will usually be a set of mutants that can

only be killed by a test case that also detects

that fault”

Geist et al, “Estimation and enhancement of real-time

software reliability through mutation analysis”, 1992

More Statistics…

How does it compare to

coverage?

• Does not replaces coverage because

some methods do not generate mutants

• But:

• Mutants on not covered methods will survive

• It provides better insight than coverage

• Method Coverage fails with long

methods/conditions/loops/etc.

Questions?

MuTalk - Mutation

Testing for Smalltalk

Hernán Wilkinson

UBA - 10Pines

hernan.wilkinson@gmail.com

Nicolás Chillo

UBA

nchillo@gmail.com

Gabriel Brunstein

UBA

gaboto@gmail.com

